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Abstract 

Optical systems often suffer from performance degradation due to contamination. The vertically tilted 

Brewster pick-off, as described in US Patent 2016033775 A1, offers a novel approach to maintain stable 

reflection properties under varying environmental conditions. The system leverages a partial reflector with a 

specific orientation relative to the laser beam's polarization plane, ensuring that the reflected fraction of the 

laser beam remains invariant to changes in temperature and contamination layer thickness. By utilizing 

Brewster's angle and optimizing the polarization angle, the system achieves a reflected fraction that is both 

stable and minimally affected by environmental factors. This innovation is particularly beneficial for 

applications requiring precise control and measurement of laser beam properties. This white paper expands 

on the fundamental principles of the vertically tilted Brewster pick-off and highlights its effectiveness in 

mitigating contamination effects and details the theoretical foundation and practical implications of this 

technology. The effect of degree of polarization is also considered. 

 

Introduction 

The stability of laser beam reflection is crucial in 

various scientific and industrial applications. 

Traditional laser systems often face challenges related 

to environmental factors such as temperature variations 

and contamination—mainly caused by dust and 

airborne molecules—, which can alter the reflective 

properties of optical components. This white paper 

introduces a novel laser system that addresses these 

challenges by employing a partial reflector with a 

strategically oriented partially reflective surface. The 

system ensures that the fraction of the laser beam 

reflected for measurement or feedback control remains 

consistent, thereby enhancing the reliability and 

accuracy of laser-based applications. This paper builds 

upon the core concepts of the patented approach and 

explores its extended benefits. In a first part, the 

theoretical foundation will be developed. Then, further 

considerations will be addressed, especially the effect 

of the degree of polarisation (DOP). 

 

 

 

Theoretical Foundation 

The core principle [1] behind the stability of the 

reflected fraction lies in the use of Brewster's angle and 

the manipulation of the polarization angle. Brewster's 

angle is the angle of incidence at which light with a 

particular polarization is perfectly transmitted through 

a transparent dielectric surface, with no reflection. Fig. 

1 shows this with the reflectivity for s-pol and p-pol, 

calculated from Fresnel’s formulas [2]. 

 

Fig. 1: Fresnel’s curves for 𝑛𝑠𝑢𝑏 = 1.47 (index of 

fused silica at 532 nm), in air (𝑛0 = 1), for both 

polarisations, p-pol and s-pol. Here, Brewster’s 

angle is 55.8 °. 

 

https://d.docs.live.net/de9aa44059eb8530/Consulting/Website/White%20papers/Brewster-Pick-off/jcc-consulting.co.uk


We focus on the reflectivities around Brewster’s angle, 

which are shown in Fig. 2. The curves are calculated 

for 3 similar refractive indices: 𝑛𝑠𝑢𝑏 = 1.47, 𝑛𝑠𝑢𝑏 = 1.47 +

0.03, 𝑛𝑠𝑢𝑏 = 1.47 − 0.03. 

 

 

Fig. 2: Fresnel’s curves zoomed around 

Brewster’s angle, for 𝑛𝑠𝑢𝑏 = 1.47 (index of fused 

silica at 532 nm), in air 𝑛0 = 1, and also for 

𝑛𝑠𝑢𝑏 = 1.47 + 0.03 and 𝑛𝑠𝑢𝑏 = 1.47 − 0.03 for 

both polarisations, p-pol (a) and s-pol (b). 

One can see that for angles of incidence (AOIs) slightly 

above Brewster’s angle, the change in reflectivity for 

both polarisation is opposite, so there should be a sweet 

spot where they might be evenly balanced if the 

polarization angle is purposely adjusted. Indeed, by 

orienting the partially reflective surface at an angle 

slightly greater than Brewster's angle and adjusting the 

polarization angle, the system might balance the p-

polarized and s-polarized components of the laser 

beam, even if the reflectivities are significantly 

different. In the following, we will calculate this more 

specifically.  

 

 

 

 

 

 

 

 

Fig. 3: Optical scheme of the system. 

The optical scheme is shown in Fig. 3, for an input 

beam symbolized by 𝑘𝑖𝑛
⃗⃗ ⃗⃗  ⃗, a horizontal angle 𝜙𝑖,.and a 

tilt angle 𝜃. The normal vector of the surface is 𝑛⃗ . The 

angle of incidence (AOI) is then 𝜙𝑖
′
. The output beam 

is symbolized by 𝑘𝑜𝑢𝑡
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , but it is not involved in the 

present calculation. 

First, the total resulting reflectivity is calculated for a 

general case with an ideal degree of polarisation 

(DOP), i.e., a purely linear polarisation, and the first 

derivative vs. the refractive index is estimated. It is 

made of a p-pol and a s-pol components as shown by 

Eqs (A-13) and (A-14) in Appendix A: 

 

𝑅𝑡𝑜𝑡 = (
cos 𝜃  sin𝜙𝑖

sin𝜙𝑖
′  |𝑟𝑝|)

2

+ (
sin 𝜃

sin 𝜙𝑖
′  |𝑟𝑠|)

2

 

     (1.a) 

𝑅𝑓𝑟𝑎𝑐 =
𝑅𝑡𝑜𝑡(𝑛𝑠𝑢𝑏+0.01)−𝑅𝑡𝑜𝑡(𝑛𝑠𝑢𝑏−0.01)

𝑅𝑡𝑜𝑡(𝑛𝑠𝑢𝑏).0.02
 

     (1.b) 

However, to be more specific, it makes sense to include 

the DOP, so these equations become as calculated in 

Appendix B: 

𝑅𝑡𝑜𝑡−𝐷𝑂𝑃 = [(
cos 𝜃  sin𝜙𝑖

sin𝜙𝑖
′  |𝑟𝑝|)

2

+ (
sin 𝜃

sin𝜙𝑖
′  |𝑟𝑠|)

2

] (
𝐷𝑂𝑃

√𝐷𝑂𝑃2 + 1
)
2

+ [(
cos 𝜃  sin𝜙𝑖

sin𝜙𝑖
′  |𝑟𝑠|)

2

+ (
sin 𝜃

sin𝜙𝑖
′  |𝑟𝑝|)

2

] (
1

√𝐷𝑂𝑃2 + 1
)
2

 

     (2.a) 

𝑅𝑓𝑟𝑎𝑐−𝐷𝑂𝑃 =
𝑅𝑡𝑜𝑡−𝐷𝑂𝑃(𝑛𝑠𝑢𝑏+0.01)−𝑅𝑡𝑜𝑡−𝐷𝑂𝑃(𝑛𝑠𝑢𝑏−0.01)

𝑅𝑡𝑜𝑡−𝐷𝑂𝑃(𝑛𝑠𝑢𝑏).0.02
 

    (2.b) 

The details of the calculation are shown in appendices 

A and B at the end of this document. 

Both are plotted as contour plots in Fig. 4, vs the 2 

angles: the horizontal angle 𝜙𝑖 and the tilt angle 𝜃 of 

the partially reflective surface. Somehow, 𝑅𝑓𝑟𝑎𝑐−𝐷𝑂𝑃 is 

arbitrary. Indeed, only the zero-line is relevant since it 

is the target. 

 

𝑘𝑖𝑛
⃗⃗ ⃗⃗  ⃗ 

𝑘𝑜𝑢𝑡
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

𝑛⃗  
 

x 

y 

z 

𝜙𝑖  
𝜙𝑖

′ 

(a) 

(b) 



 

Fig. 4: Contour plots of 𝑅𝑓𝑟𝑎𝑐−𝐷𝑂𝑃 and 𝑅𝑡𝑜𝑡−𝐷𝑂𝑃, 

calculated from Eqs (2). The specific point of the 

zero-line at a reflectivity of 2 % is also calculated. 

The DOP is 20. The red asterisk corresponds to the 

angles of 62.5° and 12.6°. 

 

A specific point (red asterisk) has been calculated, set 

on the zero-line (𝑅𝑓𝑟𝑎𝑐−𝐷𝑂𝑃 = 0) and corresponding to 

𝑅𝑡𝑜𝑡−𝐷𝑂𝑃 = 2%, for a DOP = 20, which corresponds to 

a power ratio of 400, which is relatively common. 

It is also possible to calculate the polarization angle p 

vs. the same 2 angles. 𝛼𝑝 has been calculated in 

Appendix A, for a horizontal input polarisation: 

𝛼𝑝 = tan−1 sin 𝜃

cos 𝜃 sin𝜙𝑖
 (3) 

It is related to a purely linear polarisation, i.e., an 

infinite value of DOP. If DOP was finite, the 

polarisation angle would be the angle of the major axis. 

 

Fig. 5: Contour plot of the polarisation angle, for 

a horizontal (oriented along y) input polarisation. 

The polarisation angle is shown in Fig. 5. As expected, 

it is close to the tilt angle 𝜃, albeit not the same. 

Once we have identified where should sit the point of 

interest (red asterisk in Fig.4) It would be interesting to 

investigate this specific point, in particular how the 

total reflectivity varies around this point. Indeed, one 

can wonder whether it corresponds to a minimum or 

not, like the Brewster’s angle. It could be done by 

looking at the reflectivity vs the horizontal angle 𝜙𝑖, for 

a given tilt angle 𝛿. This done in Fig. 5. 

 

Fig. 5: Total reflectivity zoomed around the points 

of interest, i.e., the target point in red asterisk, 

and the minimum in blue asterisk. In this 

particular case, 𝑛𝑠𝑢𝑏 = 1.47, 𝐷𝑂𝑃 = 20, 𝜃 =

12.6°, and the target reflectivity on the zero-line 

is 2 %. It is shown with the red asterisk. In 

practice, the easiest to see is the minimum 

reflectivity, which is shown on the graph with 

the blue asterisk. The difference in 𝜙𝑖 between 

the 2 asterisks is here 9°. 

In Fig. 5, one can see that the difference in 𝜙𝑖 between 

the target point and the minimum reflectivity is 9 °. 

This could be a strategy for reaching the target point 

accurately. 

In practice, there might still be a power drift due to 

miscalibration. To refine the adjustment, the sign of 

miscalibration should tell on which side of the zero-line 

the system is. 

 

Further considerations 

The system includes a feedback mechanism that 

utilizes the reflected fraction to control the laser beam's 

power. By measuring the power of the reflected 

portion, the system can adjust the laser's output to 

maintain a stable power level, even under varying 

environmental conditions. This feedback control is 

essential for applications requiring precise and stable 

laser beam properties. 

In practice, the effect shown in this paper is seen with 

the sign of miscalibration. Indeed, the adjustment of the 

reflective pick-off can be optimized. From Fig. 4. one 

can see that for a given tilt angle, adjusting the 

horizontal angle can bring the system on one side of the 

zero-line or the other, which make the derivative 

positive or negative. Consequently, in practice, it will 

make the miscalibration ‘positive’ or ‘negative’. 

Therefore, observing the behaviour of the laser tells in 

which direction the horizontal angle should be changed 

to reach the vicinity of the zero-line. 

The effect of DOP can also be investigated, as it can 

change substantially the optimal configuration. It also 

justifies the need of the empirical approach explained 

above. 



Lasers are often polarized linearly, especially those 

with intracavity doubling. The power ratio (Ratio 

between major axis over minor axis) can even be 

around 1600, which makes a DOP (as defined in Eqs 

(B-1)) of 40. However, because of residual stress 

birefringence, it can be sometimes as low as 12. In Fig. 

6, the target angles (defining how the pick-off plate 

should be oriented) are plotted vs. DOP from 12 to 50. 

𝑛𝑠𝑢𝑏 and 𝑛0 are still taken as 1.47 and 1, respectively. 

 

 

Fig. 6: Target angles [(a): 𝜙𝑖 and (b): 𝜃] for 𝑛𝑠𝑢𝑏 =

1.47 and 𝑛0 = 1. They have been calculated for 

𝑅𝑓𝑟𝑎𝑐−𝐷𝑂𝑃 = 0 and 𝑅𝑡𝑜𝑡−𝐷𝑂𝑃 = 2%. 

From Fig. 6, it can be noticed that for the lowest values 

of DOP (left side of the curve), 𝜙𝑖tends to increase, and 

𝜃 tends to decrease substantially. 

 

Conclusion 

This white paper presents an advanced laser system that 

achieves stable reflection properties under varying 

environmental conditions. By using the vertically tilted 

Brewster pick-off technique and optimizing the 

polarization angle, the system ensures that the reflected 

fraction of the laser beam remains invariant to changes 

in temperature or contamination. This innovation 

enhances optical performance, extends component 

longevity, and offers significant benefits for 

applications requiring precise control and measurement 

of laser beam properties, paving the way for more 

reliable and accurate laser-based technologies. 

This white paper provides a comprehensive overview 

of the advanced laser system, its theoretical foundation, 

and practical implications. It serves as a valuable 

resource for understanding the innovation and its 

potential impact on various applications. Moreover, the 

thorough calculation allows to accurately predicts the 

behaviour of actual systems. 

 

Appendix A 

The purpose of this appendix is to perform the thorough 

calculation of the formulas involved. This calculation 

is performed according to the scheme in Fig. 3. 

We will need to build the formulas of 𝑅𝑡𝑜𝑡, the total (p-

pol + s-pol) reflectivity on the surface of interest, and 

its first derivative vs. the refractive index of the surface, 

relatively to 𝑅𝑡𝑜𝑡. We will call it 𝑅𝑓𝑟𝑎𝑐 . These formulas 

will need to be depending on the angles in Fig. 3. 

First, the normal input beam is defined as: 

  𝑘𝑖𝑛
⃗⃗ ⃗⃗  ⃗ = (

0
0
1
)  (A-1) 

Where the referential is defined as (x,y,z) in Fig. 3. 

The reflective surface is defined by the normal vector: 

  𝑛⃗ = (
sin 𝜃

− cos 𝜃 sin 𝜙𝑖

−cos 𝜃 cos𝜙𝑖

) (A-2) 

Where 𝜃 is the tilt angle of the reflective surface, and 

𝜙𝑖 is the horizontal angle of the beam vs. the reflective 

surface. 

One can set: 

  𝑛⃗ . (−𝑘𝑖𝑛
⃗⃗ ⃗⃗  ⃗) = cos𝜙𝑖

′
 (A-3) 

Where 𝜙𝑖
′
 is the angle of incidence (AOI). Combining 

(A-1), (A-2), and (A-3) leads to: 

  cos 𝜙𝑖
′ = cos 𝜃 cos𝜙𝑖 (A-4) 

This can give the angle of incidence (AOI) 𝜙𝑖
′
. 

It should be also possible to calculate the p-pol and s-

pol components. This is necessary to calculate the total 

reflectivity, by using the Fresnel’s equations. 

First, the p-pol component is in the plane of 

polarization, and the s-pol is perpendicular to it, i.e., 

perpendicular to both 𝑘𝑖𝑛
⃗⃗ ⃗⃗  ⃗ and 𝑛⃗ . 

The latter is easy to calculate, by using the cross 

product. We can introduce 𝑚⃗⃗ , the unitary vector 

defining the s-pol. One can write: 

  𝑚⃗⃗ =
𝑘𝑖𝑛⃗⃗ ⃗⃗⃗⃗  ⃗×𝑛⃗ 

‖𝑘𝑖𝑛⃗⃗ ⃗⃗⃗⃗  ⃗×𝑛⃗ ‖
  (A-5) 

Which can also be written: 

  𝑚⃗⃗ =
1

sin𝜙𝑖
′ (

cos 𝜃 sin𝜙𝑖

sin 𝜃
0

) (A-6) 

(a) 

(b) 



This is where we can introduce 𝛿, the angle of the s-pol 

with the x-direction: 

𝑚⃗⃗ = (
cos 𝛿
sin 𝛿
0

) (A-7) 

It is worthwhile to notice that 𝛿 is also the angle 

between the p-pol direction and the polarisation (on y), 

as shown in Fig. A-1: 

 

 

 

 

 

 

 

Fig. A-1: Description of the vectors 

involved, perpendicularly to z-axis 

 

Since the incident polarisation is along y, the input 

polarisation can be defined as: 

𝐸⃗ = (
0
1
0
)  (A-8) 

From this one can introduce the polarisation angle 𝛼𝑝, 

which is the angle between the p-pol component and 

the y-direction, because: 

𝐸⃗ = 𝐸𝑠
⃗⃗⃗⃗ + 𝐸𝑝

⃗⃗ ⃗⃗   (A-9) 

One can then deduce: 

cos 𝛼𝑝 =
cos𝜃 sin𝜙𝑖

sin𝜙𝑖
′   (A-10.a) 

sin 𝛼𝑝 =
sin 𝜃

sin𝜙𝑖
′   (A-10.b) 

The polarisation angle can then be extracted from: 

tan 𝛼𝑝 =
sin𝜃

cos𝜃 sin𝜙𝑖
 (A-11) 

This is useful to calculate the total reflectivity, by 

adding the p-pol and s-pol reflectivities. The sign of 

tan 𝛼𝑝 depends on how the polarisation is defined, 

since 𝛼𝑝 is always modulo 𝜋. We might need to 

consider |tan 𝛼𝑝|, i.e., |𝛼𝑝|. Anyway, it will be used 

with squares on sines and cosines. 

However, the goal is to separate the p-pol and s-pol 

components. In the present case, the major component 

is p-pol, with the smallest reflectivity, and the minor 

one is s-pol, with the biggest reflectivity. As a result, 

the total reflectivity is: 

𝑅𝑡𝑜𝑡 = (cos 𝛼𝑝  |𝑟𝑝|)
2
+ (sin 𝛼𝑝  |𝑟𝑠|)

2
 (A-12) 

Where 𝑟𝑝 and 𝑟𝑠 are the amplitude reflectivities for p- 

and s-polarisations, respectively. It can then be 

explicated as: 

𝑅𝑡𝑜𝑡 = (
cos 𝜃  sin𝜙𝑖

sin𝜙𝑖
′  |𝑟𝑝|)

2

+ (
sin 𝜃

sin 𝜙𝑖
′  |𝑟𝑠|)

2

 

     (A-13) 

It looks like a complicated function to plot, but it is not 

difficult to do. We will use Python, which has some 

built-in functions for that. 

One can then define the relative derivative of 𝑅𝑡𝑜𝑡 vs. 

𝑛𝑠𝑢𝑏, the refractive index of the substrate. This is what 

we want to set to 0. It can be defined as follows: 

𝑅𝑓𝑟𝑎𝑐 =
𝑅𝑡𝑜𝑡(𝑛𝑠𝑢𝑏+0.01)−𝑅𝑡𝑜𝑡(𝑛𝑠𝑢𝑏−0.01)

𝑅𝑡𝑜𝑡(𝑛𝑠𝑢𝑏).0.02
 

     (A.14) 

It is not calculated analytically, but rather numerically, 

which is easier in a Python code. 

 

Appendix B 

The purpose of this appendix is to modify the previous 

calculation to adapt it to the general case of a non-

purely linear polarisation, which is the most general 

and common case. 

First, the degree of polarisation needs to be defined. It 

corresponds to the ratio of amplitudes between the two 

components 𝐸𝑚𝑎𝑗𝑜𝑟  and 𝐸𝑚𝑖𝑛𝑜𝑟 , in the case of slight 

depolarisation or elliptical polarisation. These two 

components can then be written: 

𝐸𝑚𝑖𝑛𝑜𝑟 =
1

√𝐷𝑂𝑃2+1
 (B-1.a) 

𝐸𝑚𝑎𝑗𝑜𝑟 =
𝐷𝑂𝑃

√𝐷𝑂𝑃2+1
 (B-1.b) 

In order 𝐷𝑂𝑃 =
𝐸𝑚𝑎𝑗𝑜𝑟

𝐸𝑚𝑖𝑛𝑜𝑟
 and 𝐸𝑚𝑖𝑛𝑜𝑟

2 + 𝐸𝑚𝑎𝑗𝑜𝑟
2 = 1. 

From Fig. A-1, the total reflectivity can then be re-

written: 

𝑅𝑡𝑜𝑡−𝐷𝑂𝑃 = (cos 𝛼𝑝)
2
(𝐸𝑚𝑎𝑗𝑜𝑟)

2
|𝑟𝑝|

2
+

(sin 𝛼𝑝)
2
(𝐸𝑚𝑖𝑛𝑜𝑟)

2|𝑟𝑝|
2
+ (sin 𝛼𝑝)

2
(𝐸𝑚𝑎𝑗𝑜𝑟)

2
|𝑟𝑠|

2 +

(cos 𝛼𝑝)
2
(𝐸𝑚𝑖𝑛𝑜𝑟)

2|𝑟𝑠|
2   (B-2) 

Where 𝑟𝑝 and 𝑟𝑠 are the reflectivities in amplitude of the 

p- and s-polarisations, respectively. 

x 

y z 

𝑚⃗⃗  

𝛼𝑝 

𝐸𝑠
⃗⃗⃗⃗  

𝐸𝑝
⃗⃗⃗⃗  

𝐸⃗  

𝛿 



𝑅𝑡𝑜𝑡−𝐷𝑂𝑃 = [(
cos 𝜃  sin𝜙𝑖

sin𝜙𝑖
′  |𝑟𝑝|)

2

+ (
sin 𝜃

sin𝜙𝑖
′  |𝑟𝑠|)

2

] (
𝐷𝑂𝑃

√𝐷𝑂𝑃2 + 1
)
2

+ [(
cos 𝜃  sin𝜙𝑖

sin𝜙𝑖
′  |𝑟𝑠|)

2

+ (
sin 𝜃

sin𝜙𝑖
′  |𝑟𝑝|)

2

] (
1

√𝐷𝑂𝑃2 + 1
)
2

 

     (B-3) 

In a similar manner as before, the derivative function 

can be defined as: 

𝑅𝑓𝑟𝑎𝑐−𝐷𝑂𝑃 =
𝑅𝑡𝑜𝑡−𝐷𝑂𝑃(𝑛𝑠𝑢𝑏+0.01)−𝑅𝑡𝑜𝑡−𝐷𝑂𝑃(𝑛𝑠𝑢𝑏−0.01)

𝑅𝑡𝑜𝑡−𝐷𝑂𝑃(𝑛𝑠𝑢𝑏).0.02
 

    (B-4) 

 

References 

[1] Cox, A., & Cotteverte, J.-C. (2015). Laser 

system (U.S. Patent No. US 2016033775 A1). 

United States Patent and Trademark Office. 

[2] Born, Max; Wolf, Emil (1999). Principles of 

optics: electromagnetic theory of propagation, 

interference and diffraction of light (7th 

expanded ed.). Cambridge: Cambridge 

University Press. 

 

https://en.wikipedia.org/wiki/Cambridge_University_Press
https://en.wikipedia.org/wiki/Cambridge_University_Press

